Minggu, 11 Maret 2012

soal program linear


Program linear

1.      Bu Ana membayar Rp. 39.000 untuk membeli 3 kg jeruk dan 2 kg apel. Pada tempat yang sama Bu Ani membayar Rp. 59.000 untuk membeli 2 kg jeruk dan 5 kg apel. Harga 1 kg jeruk adalah…
A.      Rp. 9.000        B. Rp. 7.000    C. Rp. 7.500    D. Rp. 6.500   E. Rp. 11.000
2.      Diketahui  dan  memenuhi sistem persamaan:  Tentukan nilai =…
A.    6          B. -2    C. 3     D. -3    E.-6
3.      Himpunan penyelesaian pertidaksamaan - x2 + 2x + 3  0 adalah …
A.    3 ≤ x ≤ 1          B. - 1 ≤ x ≤ 3   C. x ≤ -3 atau x ≥ 1     D. x ≤ -1 atau x ≥ 2     E. x ≤ -1 atau x ≥ 3
4.      Himpunan penyelesaian dari sitem persamaan linear:
2x + 2y = 2
2x + 3y = 6
Adalah..
A.    (-3 , 4) B. (3 , -4)         C. (-3 , -4)       D. (2 , -4)        E. (4 , -3)
5.      Daerah yang diarsir merupakan penyelesaian dari system pertidaksamaan linear…
A.   x + 2y ≤ 8, 3x + 2y 12, x 0 y 0                                  
B.   x + 2y  8, 3x + 2y  12, x 0 y 0               6
C.  x - 2y  8, 3x - 2y ≤ 12, x 0 y 0
D.  x + 2y ≤ 8, 3x - 2y 12, x 0 y 0                     4
E.  x + 2y ≤ 8, 3x + 2y ≤ 12, x 0 y 0
                                                                                         4          8

6.      Daerah yang diarsir merupakan penyelesaian dari system pertidaksamaan
A.    5x + 3y ≤ 30, x - 2y  4, x 0 y 0                  6 
B.     5x + 3y ≤ 30, x - 2y ≤ 4, x 0 y 0                        
C.     3x + 5y ≤ 30, 2x - y  4, x 0 y 0
D.    3x + 5y ≤ 30, 2x - y ≤ 4, x 0 y 0
E.     3x + 5y  30, 2x - y ≤ 4, x 0 y 0                         2                10
                                                                                              -4

7.      Pedagang teh mempunyai lemari yang hanya cukup ditempati untuk 40 boks teh. Teh A dibeli dengan harga Rp. 6000,00 setiap boks dan teh B dibeli dengan harga Rp. 8000,00 setiap boks. Jika pedagang tersebut mempunyai modal Rp. 300.000,00 untuk membeli x boks teh A dan y boks teh B maka system pertidaksamaan dari masalah tersebut adalah…
A.    3x + 4y  150, x + y  40, x 0 y 0            
B.     3x + 4y ≤ 150, x + y ≤ 40, x 0 y 0
C.     3x + 4y  150, x + y ≤ 40, x 0 y 0
D.    6x + 8y ≤ 300, x + y 40, x 0 y 0
E.     8x + 6y  300, x + y ≤ 40, x 0 y 0
8.      Seorang pengusaha mebel akan memproduksi meja dan kursi yang menggunakan bahan dari papan kayu dengan ukuran tertentu . Satu meja memerlukan bahan 10 potong dan satu kursi memerlukan 5 potong papan. Papan yang tersedia ada 500 potong. Biaya pembuatan satu meja Rp. 100.000 dan pembuatan satu kursi Rp. 40.000. Anggaran yang tersedia Rp. 1000.000. Model matematika dari persoalan tersebut adalah…
A.   x + 2y ≤ 100; 5x + 2y ≤ 50; x ≥ 0; y ≥ 0 
B.   x + 2y ≤ 100; 2x + 5y ≤ 50; x ≥ 0; y ≥ 0
C.   2x + y ≤ 100; 2x + 5y ≤ 50; x ≥ 0; y ≥ 0
D.   2x + 2y ≤ 100; 5x + 2y ≤ 50; x ≥ 0; y ≥ 0
E.   2x + y ≤ 100; 5x + 2y ≤ 50; x ≥ 0; y ≥ 0
9.      Pedagang teh mempunyai lemari yang hanya cukup di tempatiuntuk 40 boks the. TehA di beli dengan harga Rp. 6000 setiap boks dan teh B dengan harga Rp. 8000 setiap boks. Jika pedagang tersebut mempunyai modal Rp. 300.000 untuk membeli x boks teh A dan y boks teh B, maka system pertidaksamaan dari masalah tersebut adalah…
A.    3x+4y  150;x + y  40; x  0; y  0          
B.     3x+4y 150;x + y  40; x  0; y  0          
C.     3x+4y  150;x + y  40; x  0; y  0          
D.    6x+8y  300;x + y  40; x  0; y  0
E.     8x+6y  300;x + y  40; x  0; y  0
10.  Sesuai dengan gambar, nilai maksimum f(x,y) = 4x + 5y di daerah yang di arsir adalah…
A.  8                                 
B.  5
C.  10                                   4
D.  11
E.  14                              2


                                                 
                                                  2      3
11.  Himpunan penyelesaian system pertidaksamaan
                                                5x + y  10
 10                                                 2x + y  8
              II                               y  2
      I                                         Ditunjukkan oleh daerah …
  8
     
       IV                                     A. I    B. II   C. III  D. IV  E. V
                      III                                 
         2                  V                                               
                         2                       4







12.  Daerah yang diarsir merupakan penyelesaian dari system pertidaksamaan linear. Nilai maksimum fungsi objektif f(x,y) = 5x + 2y adalah

A.    33                                        (3,7)     
B.     29
C.     31
D.    32                                                (5,3)                  
E.     9                           (1,2)

13.  Daerah yang diarsir merupakan penyelesaian dari system pertidaksamaan. Nilai maksimum untuk 5x + 4y dari daerah penyelesaian tersebut adalah
A.    40            6              
B.     28
C.     24       4           (4,2)
D.    20          
E.     16
                                4         8


14.  Fungsi f(x,y) = 2(x + y) – 5 yang disefinisikan pada daerah yang diarsir , mencapai Maximum pada...
A.     x = 0 , y = 2     B. x = 2 , y = 3    C. x = 1 , y = 3   D. x = 4 , y = 0   E. x = 2 , y = 2
15.  Luas daerah parkir 1.760 m2. Luas rata – rata untuk mobil kecil 4 m2 dan mobil besar 20 m2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp. 1.000,00/jam dan mobil besar Rp. 2.000,00/jam. Jika dalam satu jam terisi penuh dan tidak kendaraan yang pergi dan datang, maka hasil minimum tempat parkir itu adalah…
A.   Rp. 176.000,00.
B.   Rp. 200.000,00.
C.   Rp. 260.000,00.
D.   Rp. 300.000,00.
E.   Rp. 340.000,00.
16.  Seorang pedagang menjual buah mangga dan pisang dengan menggunakan gerobak. Pedagang tersebut membeli mangga dengan harga Rp. 8.000,00/kg dan pisang Rp. 6.000,00/kg. Modal yang tersedia Rp. 1.200.000,00 dan gerobaknya hanya dapat memuat mangga dan pisang sebanyak 180 kg. Jika harga jual mangga Rp. 9.200,00/kg dan pisang Rp. 7.000,00/kg, maka laba maksimum yang diperoleh adalah ….
A.   Rp. 150.000,00.
B.   Rp. 180.000,00.
C.   Rp. 192.000,00.
D.   Rp. 204.000,00.
E.   Rp. 216.000,00.
17.  Tanah seluas 10.000 m2 akan dibangun rumah tipe A dan tipe B. Untuk tipe A diperlukan 100 m2 dan dan tipe B diperlukan 75 m2. Jumlah rumah yang akan dibangun paling banyak 125 unit. Keuntungan rumah tipe A adalah Rp. 6.000.000,00/unit dan tipe B adalah Rp. 4.000.000,00/unit. Keuntungan minimum yang dapat diperoleh daru penjualan rumah tersebut adalah ….
A.   Rp. 550.000.000,00.
B.   Rp. 600.000.000,00.
C.   Rp. 700.000.000,00.
D.   Rp. 800.000.000,00.
E.   Rp. 500.000.000,00.
18.  Suatu tempat parkir yang luasnya 300 m2 digunakan untuk memarkir sebuah mobil dengan rata – rata 10 m2 dan untuk bus rata – rata 20 m2 dengan daya tampung hanya 24 kendaraan. Biaya parkir untuk mobil Rp. 1.000,00/jam dan untuk bus Rp. 3.000,00/jam. Jika dalam satu jam tempat parkir terisi penuh dan tidak ada kendaraan yang dating dan pergi, hasil maksimum tempat parkir iru adalah ….
A.   Rp. 15.000,00.
B.   Rp. 30.000,00.
C.   Rp. 40.000,00.
D.   Rp. 45.000,00.
E.   Rp. 60.000,00.
19.  Luas daerah parkir 176 meter-persegi, luas rata-rata untuk parkir mobil sedan 4 meter-persegi dan untuk bus 20 meter-persegi. Daya muat Maxiemum parkir hanya 20 kendaraan, biaya parkir untuk mobil  $100/jam dan untuk bus $200/jam.  Jika dalam 1 jam tidak ada kendaraan yang pergi dan datang, maka hasil yang didapatkan tempat parkir tersebut Maxiemum ....
A.   $2,000
B.   $3,400
C.   $4,400
D.   $2,600
E.   $3,000
20.  Dengan persediaan kain polos 20 m dan kain bergaris 10 m, seorang penjahit akan membuat 2 model pakaian jadi. Model I memerlukan 1 m kain polos dan 1,5 m kain bergaris. Model II memerlukan 2 m kain polos dan 0,5 m kain bergaris. Bila kain tersebut dijual, setiap model I memperoleh untung Rp. 15.000,00  dan model II memperoleh untung Rp. 10.000,00. Laba maksimum yang diperoleh sebanyak…
 A.   Rp. 200.000,00
 B.   Rp. 140.000,00
 C.  Rp. 160.000,00
 D.  Rp. 250.000,00
 E.  Rp. 300.000,00

Tidak ada komentar:

Posting Komentar